
Structured Query Language (SQL)

Structured Query Language is a standard Database language which is used to create, maintain and

retrieve the relational database. Following are some interesting facts about SQL.

SQL is case insensitive. But it is a recommended practice to use keywords (like SELECT, UPDATE,

CREATE, etc) in capital letters and use user defined things (liked table name, column name, etc) in

small letters.

We can write comments in SQL using “–” (double hyphen) at the beginning of any line.

SQL is the programming language for relational databases (explained below) like MySQL, Oracle,

Sybase, SQL Server etc. Other non-relational databases (also called NoSQL) databases like MongoDB,

DynamoDB, etc do not use SQL

Although there is an ISO standard for SQL, most of the implementations slightly vary in syntax. So, we

may encounter queries that work in SQL Server but do not work in MySQL.

What is Relational Database?

Relational database means the data is stored as well as retrieved in the form of relations (tables).

Table 1 shows the relational database with only one relation called STUDENT which stores ROLL_NO,

NAME, ADDRESS, PHONE and AGE of students.

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

2 RAMESH GURGAON 9652431543 18

3 SUJIT ROHTAK 9156253131 20

4 SURESH DELHI 9156768971 18

 TABLE 1

These are some important terminologies that are used in terms of relation.

Attribute: Attributes are the properties that define a relation. e.g.; ROLL_NO, NAME etc.

Tuple: Each row in the relation is known as tuple. The above relation contains 4 tuples, one of which

is shown as:

1 RAM DELHI 9455123451 18

Degree: The number of attributes in the relation is known as degree of the relation.

The STUDENT relation defined above has degree 5.

Cardinality: The number of tuples in a relation is known as cardinality. The STUDENT relation defined

above has cardinality 4.

Column: Column represents the set of values for a particular attribute. The column ROLL_NO is

extracted from relation STUDENT.

ROLL_NO

1

2

3

4

The queries to deal with relational database can be categories as:

Data Definition Language: It is used to define the structure of the database. e.g; CREATE TABLE, ADD

COLUMN, DROP COLUMN and so on.

Data Manipulation Language: It is used to manipulate data in the relations. e.g.; INSERT, DELETE,

UPDATE and so on.

Data Query Language: It is used to extract the data from the relations. e.g.; SELECT

So first we will consider the Data Query Language. A generic query to retrieve from a relational

database is:

1. SELECT [DISTINCT] Attribute_List FROM R1,R2….RM

2. [WHERE condition]

3. [GROUP BY (Attributes)[HAVING condition]]

4. [ORDER BY(Attributes)[DESC]];

Part of the query represented by statement 1 is compulsory if you want to retrieve from a relational

database. The statements written inside [] are optional. We will look at the possible query

combination on relation shown in Table 1.

Case 1: If we want to retrieve attributes ROLL_NO and NAME of all students, the query will be:

SELECT ROLL_NO, NAME FROM STUDENT;

ROLL_NO NAME

1 RAM

2 RAMESH

3 SUJIT

4 SURESH

Case 2: If we want to retrieve ROLL_NO and NAME of the students whose ROLL_NO is greater than

2, the query will be:

SELECT ROLL_NO, NAME FROM STUDENT

WHERE ROLL_NO>2;

ROLL_NO NAME

3 SUJIT

4 SURESH

CASE 3: If we want to retrieve all attributes of students, we can write * in place of writing all

attributes as:

SELECT * FROM STUDENT

WHERE ROLL_NO>2;

ROLL_NO NAME ADDRESS PHONE AGE

3 SUJIT ROHTAK 9156253131 20

4 SURESH DELHI 9156768971 18

CASE 4: If we want to represent the relation in ascending order by AGE, we can use ORDER BY clause

as:

SELECT * FROM STUDENT ORDER BY AGE;

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

2 RAMESH GURGAON 9652431543 18

4 SURESH DELHI 9156768971 18

3 SUJIT ROHTAK 9156253131 20

Note: ORDER BY AGE is equivalent to ORDER BY AGE ASC. If we want to retrieve the results in

descending order of AGE, we can use ORDER BY AGE DESC.

CASE 5: If we want to retrieve distinct values of an attribute or group of attribute, DISTINCT is used as

in:

SELECT DISTINCT ADDRESS FROM STUDENT;

ADDRESS

DELHI

GURGAON

ROHTAK

If DISTINCT is not used, DELHI will be repeated twice in result set. Before understanding GROUP BY

and HAVING, we need to understand aggregations functions in SQL.

AGGRATION FUNCTIONS: Aggregation functions are used to perform mathematical operations on

data values of a relation. Some of the common aggregation functions used in SQL are:

• COUNT: Count function is used to count the number of rows in a relation. e.g;

SELECT COUNT (PHONE) FROM STUDENT;

COUNT(PHONE)

4

• SUM: SUM function is used to add the values of an attribute in a relation. e.g;

SELECT SUM (AGE) FROM STUDENT;

SUM(AGE)

74

In the same way, MIN, MAX and AVG can be used. As we have seen above, all aggregation functions

return only 1 row.

AVERAGE: It gives the average values of the tupples. It is also defined as sum divided by count values.

Syntax:AVG(attributename)

OR

Syntax:SUM(attributename)/COUNT(attributename)

The above mentioned syntax also retrieves the average value of tupples.

MAXIMUM:It extracts the maximum value among the set of tupples.

Syntax:MAX(attributename)

MINIMUM:It extracts the minimum value amongst the set of all the tupples.

Syntax:MIN(attributename)

GROUP BY: Group by is used to group the tuples of a relation based on an attribute or group of

attribute. It is always combined with aggregation function which is computed on group. e.g.;

SELECT ADDRESS, SUM(AGE) FROM STUDENT

GROUP BY (ADDRESS);

In this query, SUM(AGE) will be computed but not for entire table but for each address. i.e.; sum of

AGE for address DELHI(18+18=36) and similarly for other address as well. The output is:

ADDRESS SUM(AGE)

DELHI 36

GURGAON 18

ROHTAK 20

If we try to execute the query given below, it will result in error because although we have computed

SUM(AGE) for each address, there are more than 1 ROLL_NO for each address we have grouped. So

it can’t be displayed in result set. We need to use aggregate functions on columns after SELECT

statement to make sense of the resulting set whenever we are using GROUP BY.

SELECT ROLL_NO, ADDRESS, SUM(AGE) FROM STUDENT

GROUP BY (ADDRESS);

NOTE: An attribute which is not a part of GROUP BY clause can’t be used for selection. Any attribute

which is part of GROUP BY CLAUSE can be used for selection but it is not mandatory. But we could

use attributes which are not a part of the GROUP BY clause in an aggregate function.

Inner Join vs Outer Join

An SQL Join is used to combine data from two or more tables based on a common field between

them. For example, consider the following two tables.

Student Table

EnrollNo StudentName Address

1001 geek1 geeksquiz1

1002 geek2 geeksquiz2

1003 geek3 geeksquiz3

1004 geek4 geeksquiz4

StudentCourse Table

CourseID EnrollNo

1 1001

2 1001

3 1001

1 1002

2 1003

Inner Join / Simple join:

In an INNER join, it allows retrieving data from two tables with the same ID.

Syntax:

SELECT COLUMN1, COLUMN2 FROM

 [TABLE 1] INNER JOIN [TABLE 2]

ON Condition;

The following is a join query that shows the names of students enrolled in different courseIDs.

SELECT StudentCourse.CourseID,Student.StudentName

FROM Student

INNER JOIN StudentCourse

ON StudentCourse.EnrollNo = Student.EnrollNo

ORDER BY StudentCourse.CourseID;

Note: INNER is optional above. Simple JOIN is also considered as INNER JOIN The above query would

produce following result.

CourseID StudentName

1 geek1

1 geek2

2 geek1

2 geek3

3 geek1

What is the difference between inner join and outer join?

Outer Join is of three types:

1. Left outer join

2. Right outer join

3. Full Join

1. Left outer join returns all rows of a table on the left side of the join. For the rows for which there is

no matching row on the right side, the result contains NULL on the right side.

Syntax:

SELECT T1.C1, T2.C2

 FROM TABLE T1

LEFT JOIN TABLE T2

ON T1.C1= T2.C1;

SELECT Student.StudentName,StudentCourse.CourseID

FROM Student

LEFT OUTER JOIN StudentCourse

ON StudentCourse.EnrollNo = Student.EnrollNo

ORDER BY StudentCourse.CourseID;

Note: OUTER is optional above. Simple LEFT JOIN is also considered as LEFT OUTER JOIN

StudentName CourseID

geek4 NULL

geek2 1

geek1 1

geek1 2

geek3 2

geek1 3

2. Right Outer Join is similar to Left Outer Join (Right replaces Left everywhere).

Syntax:

SELECT T1.C1, T2.C2

 FROM TABLE T1

RIGHT JOIN TABLE T2

ON T1.C1= T2.C1;

Example:

SELECT Student.StudentName, StudentCourse.CourseID

FROM Student

RIGHT OUTER JOIN StudentCourse

ON StudentCourse.EnrollNo = Student.EnrollNo

ORDER BY StudentCourse.CourseID;

3. Full Outer Join contains the results of both the Left and Right outer joins. It is also known as cross

join. It will provide a mixture of two tables.

Syntax:

SELECT * FROM T1

CROSS JOIN T2;

Having vs Where Clause in SQL

The difference between the having and where clause in SQL is that the where clause cannot be used

with aggregates, but the having clause can.

The where clause works on row’s data, not on aggregated data. Let us consider below table ‘Marks’.

Student Course Score
a c1 40

a c2 50

b c3 60

d c1 70

e c2 80

Consider the query

SELECT Student, Score FROM Marks WHERE Score >=40

This would select data row by row basis.

The having clause works on aggregated data.

For example, output of below query

SELECT Student, SUM(score) AS total FROM Marks GROUP BY Student

When we apply having in above query, we get

SELECT Student, SUM(score) AS total FROM Marks GROUP BY Student HAVING total > 70

Student Total

a 90

e 80

Note: It is not a predefined rule but in a good number of the SQL queries, we use WHERE prior

to GROUP BY and HAVING after GROUP BY. The Where clause acts as a pre filter where as Having as

a post filter.

A database object is any defined object in a database that is used to store or reference data.Anything

which we make from create command is known as Database Object.It can be used to hold and

manipulate the data.Some of the examples of database objects are : view, sequence, indexes, etc.

• Table – Basic unit of storage; composed rows and columns

Student Total

a 90

b 60

d 70

e 80

• View – Logically represents subsets of data from one or more tables

• Sequence – Generates primary key values

• Index – Improves the performance of some queries

• Synonym – Alternative name for an object

Different database Objects :

1. Table – This database object is used to create a table in database.

Syntax :

CREATE TABLE [schema.]table

 (column datatype [DEFAULT expr][, ...]);

Example :

CREATE TABLE dept

 (deptno NUMBER(2),

 dname VARCHAR2(14),

 loc VARCHAR2(13));

Output :

DESCRIBE dept;

2. View – This database object is used to create a view in database.A view is a logical table

based on a table or another view. A view contains no data of its own but is like a window

through which data from tables can be viewed or changed. The tables on which a view is

based are called base tables. The view is stored as a SELECT statement in the data dictionary.

Syntax :

CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW view

 [(alias[, alias]...)]

 AS subquery

 [WITH CHECK OPTION [CONSTRAINT constraint]]

 [WITH READ ONLY [CONSTRAINT constraint]];

Example :

i. CREATE VIEW salvu50

ii. AS SELECT employee_id ID_NUMBER, last_name NAME,

iii. salary*12 ANN_SALARY

iv. FROM employees

v. WHERE department_id = 50;

Output :

SELECT *

FROM salvu50;

3. Sequence – This database object is used to create a sequence in database.A sequence is a

user created database object that can be shared by multiple users to generate unique

integers. A typical usage for sequences is to create a primary key value, which must be

unique for each row.The sequence is generated and incremented (or decremented) by an

internal Oracle routine.

Syntax :

CREATE SEQUENCE sequence

 [INCREMENT BY n]

 [START WITH n]

 [{MAXVALUE n | NOMAXVALUE}]

 [{MINVALUE n | NOMINVALUE}]

 [{CYCLE | NOCYCLE}]

 [{CACHE n | NOCACHE}];

Example :

CREATE SEQUENCE dept_deptid_seq

 INCREMENT BY 10

 START WITH 120

 MAXVALUE 9999

 NOCACHE

 NOCYCLE;

Check if sequence is created by :

SELECT sequence_name, min_value, max_value,

 increment_by, last_number

 FROM user_sequences;

4. Index – This database object is used to create a indexes in database.An Oracle server index is

a schema object that can speed up the retrieval of rows by using a pointer.Indexes can be

created explicitly or automatically. If you do not have an index on the column, then a full

table scan occurs.

An index provides direct and fast access to rows in a table. Its purpose is to reduce the necessity of

disk I/O by using an indexed path to locate data quickly. The index is used and maintained

automatically by the Oracle server. Once an index is created, no direct activity is required by the

user.Indexes are logically and physically independent of the table they index. This means that they

can be created or dropped at any time and have no effect on the base tables or other indexes.

Syntax :

1. CREATE INDEX index

2. ON table (column[, column]...);

Example :

CREATE INDEX emp_last_name_idx

 ON employees(last_name);

5. Synonym – This database object is used to create a indexes in database.It simplify access to

objects by creating a synonym(another name for an object). With synonyms, you can Ease

referring to a table owned by another user and shorten lengthy object names.To refer to a

table owned by another user, you need to prefix the table name with the name of the user

who created it followed by a period. Creating a synonym eliminates the need to qualify the

object name with the schema and provides you with an alternative name for a table, view,

sequence,procedure, or other objects. This method can be especially useful with lengthy

object names, such as views.

In the syntax:

PUBLIC : creates a synonym accessible to all users

synonym : is the name of the synonym to be created

object : identifies the object for which the synonym is created

Syntax :

CREATE [PUBLIC] SYNONYM synonym FOR object;

Example :

CREATE SYNONYM d_sum FOR dept_sum_vu;

Nested Queries in SQL

In nested queries, a query is written inside a query. The result of inner query is used in execution of

outer query. We will use STUDENT, COURSE, STUDENT_COURSE tables for understanding nested

queries.

STUDENT

S_ID S_NAME S_ADDRESS S_PHONE S_AGE

S1 RAM DELHI 9455123451 18

S2 RAMESH GURGAON 9652431543 18

S3 SUJIT ROHTAK 9156253131 20

S4 SURESH DELHI 9156768971 18

COURSE

C_ID C_NAME

C1 DSA

C2 Programming

C3 DBMS

STUDENT_COURSE

S_ID C_ID

S1 C1

S1 C3

S2 C1

S3 C2

S4 C2

S4 C3

There are mainly two types of nested queries:

• Independent Nested Queries: In independent nested queries, query execution starts from

innermost query to outermost queries. The execution of inner query is independent of outer

query, but the result of inner query is used in execution of outer query. Various operators like

IN, NOT IN, ANY, ALL etc are used in writing independent nested queries.

• IN: If we want to find out S_ID who are enrolled in C_NAME ‘DSA’ or ‘DBMS’, we can write it

with the help of independent nested query and IN operator. From COURSE table, we can find

out C_ID for C_NAME ‘DSA’ or DBMS’ and we can use these C_IDs for finding S_IDs

from STUDENT_COURSE TABLE.

STEP 1: Finding C_ID for C_NAME =’DSA’ or ‘DBMS’

Select C_ID from COURSE where C_NAME = ‘DSA’ or C_NAME = ‘DBMS’

STEP 2: Using C_ID of step 1 for finding S_ID

Select S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where C_NAME = ‘DSA’ or C_NAME=’DBMS’);

The inner query will return a set with members C1 and C3 and outer query will return those S_IDs for

which C_ID is equal to any member of set (C1 and C3 in this case). So, it will return S1, S2 and S4.

Note: If we want to find out names of STUDENTs who have either enrolled in ‘DSA’ or ‘DBMS’, it can

be done as:

Select S_NAME from STUDENT where S_ID IN

(Select S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where C_NAME=’DSA’ or C_NAME=’DBMS’));

NOT IN: If we want to find out S_IDs of STUDENTs who have neither enrolled in ‘DSA’ nor in ‘DBMS’,

it can be done as:

Select S_ID from STUDENT where S_ID NOT IN

(Select S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where C_NAME=’DSA’ or C_NAME=’DBMS’));

The innermost query will return a set with members C1 and C3. Second inner query will return

those S_IDs for which C_ID is equal to any member of set (C1 and C3 in this case) which are S1, S2

and S4. The outermost query will return those S_IDs where S_ID is not a member of set (S1, S2 and

S4). So it will return S3.

• Co-related Nested Queries: In co-related nested queries, the output of inner query depends

on the row which is being currently executed in outer query. e.g.; If we want to find

out S_NAME of STUDENTs who are enrolled in C_ID ‘C1’, it can be done with the help of co-

related nested query as:

Select S_NAME from STUDENT S where EXISTS(select * from STUDENT_COURSE SC where

S.S_ID=SC.S_ID and SC.C_ID=’C1’);

For each row of STUDENT S, it will find the rows from STUDENT_COURSE where S.S_ID = SC.S_ID and

SC.C_ID=’C1’. If for a S_ID from STUDENT S, atleast a row exists in STUDENT_COURSE SC

with C_ID=’C1’, then inner query will return true and corresponding S_ID will be returned as output.

Join operation Vs Nested query in DBMS

The growth of technology and automation coupled with exponential amounts of data has led to the

importance and omnipresence of databases which, simply put, are organized collections of data.

Considering a naive approach, one can theoretically keep all the data in one large table, however

that increases the access time in searching for a record, security issues if the master table is

destroyed, redundant storage of information and other issues. So tables are decomposed into

multiple smaller tables.

For retrieving information from multiple tables, we need to extract selected data from different

records, using operations called join(inner join, outer join and most importantly natural join).

Consider 2 table schemas employee(employee_name, street, city)with n rows and

works(employee_name, branch_name, salary) with m rows. A cartesian product of these 2 tables

creates a table with n*m rows. A natural join selects from this n*m rows all rows with same values

for employee_name. To avoid loss of information(some tuples in employee have no corresponding

tuples in works) we use left outer join or right outer join.

A join operation or a nested query is better subject to conditions:

Suppose our 2 tables are stored on a local system. Performing a join or a nested query will make little

difference. Now let tables be stored across a distributed databases. For a nested query, we only

extract the relevant information from each table, located on different computers, then merge the

tuples obtained to obtain the result. For a join, we would be required to fetch the whole table from

each site and create a large table from which the filtering will occur, hence more time will be

required. So for distributed databases, nested queries are better.

RDBMS optimizer is concerned with performance related to the subquery or join written by the

programmer. Joins are universally understood hence no optimization issues can arise. If portability

across multiple platforms is called for, avoid subqueries as it may run into bugs(SQL server more

adept with joins as its usually used with Microsoft’s graphical query editors that use joins).

Implementation specific: Suppose we have queries where a few of the nested queries are constant.

In MySQL, every constant subquery would be evaluated as many times as encountered, there being

no cache facility. This is an obvious problem if the constant subquery involves large tuples.

Subqueries return a set of data. Joins return a dataset which is necessarily indexed. Working on

indexed data is faster so if the dataset returned by subqueries is large, joins are a better idea.

Subqueries may take longer to execute than joins depending on how the database optimizer treats

them(may be converted to joins). Subqueries are easier to read, understand and evaluate than

cryptic joins. They allow a bottom-up approach, isolating and completing each task sequentially.

 Indexing in Databases | Set 1

Indexing is a way to optimize the performance of a database by minimizing the number of disk

accesses required when a query is processed. It is a data structure technique which is used to quickly

locate and access the data in a database.

Indexes are created using a few database columns.

• The first column is the Search key that contains a copy of the primary key or candidate key of

the table. These values are stored in sorted order so that the corresponding data can be

accessed quickly.

Note: The data may or may not be stored in sorted order.

• The second column is the Data Reference or Pointer which contains a set of pointers holding

the address of the disk block where that particular key value can be found.

The indexing has various attributes:

• Access Types: This refers to the type of access such as value based search, range access, etc.

• Access Time: It refers to the time needed to find particular data element or set of elements.

• Insertion Time: It refers to the time taken to find the appropriate space and insert a new

data.

• Deletion Time: Time taken to find an item and delete it as well as update the index structure.

• Space Overhead: It refers to the additional space required by the index.

In general, there are two types of file organization mechanism which are followed by the indexing

methods to store the data:

1. Sequential File Organization or Ordered Index File: In this, the indices are based on a sorted

ordering of the values. These are generally fast and a more traditional type of storing mechanism.

These Ordered or Sequential file organization might store the data in a dense or sparse format:

(i) Dense Index:

• For every search key value in the data file, there is an index record.

• This record contains the search key and also a reference to the first data record with that

search key value.

(ii) Sparse Index:

• The index record appears only for a few items in the data file. Each item points to a block as

shown.

• To locate a record, we find the index record with the largest search key value less than or

equal to the search key value we are looking for.

• We start at that record pointed to by the index record, and proceed along with the pointers

in the file (that is, sequentially) until we find the desired record.

• Number of Accesses required=log₂(n)+1, (here n=number of blocks acquired by index file)

https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190812183521/Dense-Index.jpg

2. Hash File organization: Indices are based on the values being distributed uniformly across a range

of buckets. The buckets to which a value is assigned is determined by a function called a hash

function.

There are primarily three methods of indexing:

• Clustered Indexing

• Non-Clustered or Secondary Indexing

• Multilevel Indexing

1. Clustered Indexing

When more than two records are stored in the same file these types of storing known as cluster

indexing. By using the cluster indexing we can reduce the cost of searching reason being multiple

records related to the same thing are stored at one place and it also gives the frequent joining of

more than two tables (records).

Clustering index is defined on an ordered data file. The data file is ordered on a non-key field. In

some cases, the index is created on non-primary key columns which may not be unique for each

record. In such cases, in order to identify the records faster, we will group two or more columns

together to get the unique values and create index out of them. This method is known as the

clustering index. Basically, records with similar characteristics are grouped together and indexes are

created for these groups.

For example, students studying in each semester are grouped together. i.e. 1st Semester students,

2nd semester students, 3rd semester students etc. are grouped.

https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190812183518/Sparse-Index.jpg

Clustered index sorted according to first name (Search key)

Primary Indexing:

This is a type of Clustered Indexing wherein the data is sorted according to the search key and the

primary key of the database table is used to create the index. It is a default format of indexing where

it induces sequential file organization. As primary keys are unique and are stored in a sorted manner,

the performance of the searching operation is quite efficient.

2. Non-clustered or Secondary Indexing

A non clustered index just tells us where the data lies, i.e. it gives us a list of virtual pointers or

references to the location where the data is actually stored. Data is not physically stored in the order

of the index. Instead, data is present in leaf nodes. For eg. the contents page of a book. Each entry

gives us the page number or location of the information stored. The actual data here(information on

each page of the book) is not organized but we have an ordered reference(contents page) to where

the data points actually lie. We can have only dense ordering in the non-clustered index as sparse

ordering is not possible because data is not physically organized accordingly.

It requires more time as compared to the clustered index because some amount of extra work is

done in order to extract the data by further following the pointer. In the case of a clustered index,

data is directly present in front of the index.

3. Multilevel Indexing

With the growth of the size of the database, indices also grow. As the index is stored in the main

memory, a single-level index might become too large a size to store with multiple disk accesses. The

multilevel indexing segregates the main block into various smaller blocks so that the same can stored

in a single block. The outer blocks are divided into inner blocks which in turn are pointed to the data

blocks. This can be easily stored in the main memory with fewer overheads.

SQL queries on clustered and non-clustered Indexes

Prerequisite – Indexing in Databases Indexing is a procedure that returns your requested data faster

from the defined table. Without indexing, the SQL server has to scan the whole table for your data.

By indexing, SQL server will do the exact same thing you do when searching for content in a book by

checking the index page. In the same way, a table’s index allows us to locate the exact data without

scanning the whole table. There are two types of indexing in SQL.

1. Clustered index

2. Non-clustered index

1. Clustered – Clustered index is the type of indexing that establishes a physical sorting order of

rows. Suppose you have a table Student_info which contains ROLL_NO as a primary key, then

Clustered index which is self-created on that primary key will sort the Student_info table as

per ROLL_NO. Clustered index is like Dictionary; in the dictionary, sorting order is alphabetical and

there is no separate index page.

Examples:

Input:

CREATE TABLE Student_info(ROLL_NO int(10) primary key,NAME varchar(20),DEPARTMENT

varchar(20),);

insert into Student_info values(1410110405, 'H Agarwal', 'CSE')

insert into Student_info values(1410110404, 'S Samadder', 'CSE')

insert into Student_info values(1410110403, 'MD Irfan', 'CSE')

SELECT * FROM Student_info

Output:

ROLL_NO NAME DEPARTMENT

1410110403 MD Irfan CSE

1410110404 S Samadder CSE

1410110405 H Agarwal CSE

If we want to create a Clustered index on another column, first we have to remove the primary key,

and then we can remove the previous index. Note that defining a column as a primary key makes

that column the Clustered Index of that table. To make any other column, the clustered index, first

we have to remove the previous one as follows below.

Syntax:

//Drop index

drop index table_name.index_name

//Create Clustered index index

create Clustered index IX_table_name_column_name

 on table_name (column_name ASC)

https://www.geeksforgeeks.org/indexing-in-databases-set-1/

Note: We can create only one clustered index in a table.

2. Non-clustered: Non-Clustered index is an index structure separate from the data stored in a table

that reorders one or more selected columns. The non-clustered index is created to improve the

performance of frequently used queries not covered by a clustered index. It’s like a textbook; the

index page is created separately at the beginning of that book. Examples:

Input:

CREATE TABLE Student_info

(

ROLL_NO int(10),

NAME varchar(20),

DEPARTMENT varchar(20),

);

insert into Student_info values(1410110405, 'H Agarwal', 'CSE')

insert into Student_info values(1410110404, 'S Samadder', 'CSE')

insert into Student_info values(1410110403, 'MD Irfan', 'CSE')

SELECT * FROM Student_info

Output:

ROLL_NO NAME DEPARTMENT

1410110405 H Agarwal CSE

1410110404 S Samadder CSE

1410110403 MD Irfan CSE

Note: We can create one or more Non_Clustered index in a table.

Syntax:

//Create Non-Clustered index

create NonClustered index IX_table_name_column_name on table_name (column_name ASC)

Table: Student_info

ROLL_NO NAME DEPARTMENT

1410110405 H Agarwal CSE

1410110404 S Samadder CSE

1410110403 MD Irfan CSE

Input: create NonClustered index IX_Student_info_NAME on Student_info (NAME ASC)

Output: Index

NAME ROW_ADDRESS

H Agarwal 1

MD Irfan 3

S Samadder 2

Clustered vs Non-Clustered index:

• In a table, there can be only one clustered index or one or more than one non_clustered

index.

• In Clustered index, there is no separate index storage but in Non-Clustered index, there is

separate index storage for the index.

• Clustered index offers faster data access, on the other hand, the Non-clustered index is

slower.

Reference: https://www.geeksforgeeks.org

