Measures of Dispersion

Measures of Dispersion

- It is the measure of extent to which an individual items vary
- Synonym for variability
- Often called "spread" or "scatter"
- Indicator of consistency among a data set
- Indicates how close data are clustered about a measure of central tendency

Compare the following distributions

- Distribution A
 - 200 200 200 200 200
- o Distribution B
 - 200 205 202 203 190
- o Distribution C
 - 1 989 2 3 5

Arithmetic mean is same for all the series but distribution differ widely from one another.

Objectives of Measuring Variation

- To gauge the reliability of an average i.e. dispersion is small, means more reliable.
- To serve as a basis for the control of variability.
- To compare two or more series with regard to their variability.

The Range

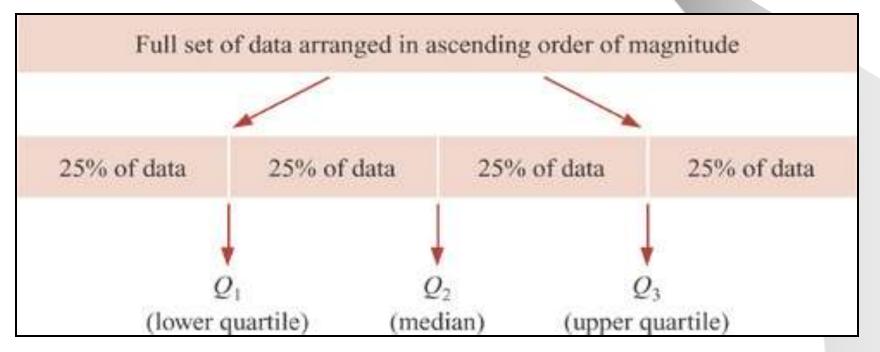
- Difference between largest value and smallest value in a set of data
- Indicates how spread out the data are
- Dependent on two extreme values.
- o Simple, easy and less time consuming.
- o Calculation:
- Find largest and smallest number in data set
- Range = Largest Smallest

Uses of Range

- Quality Control
- Weather Forecasting
- Fluctuations in Share/Gold prices

Quartile Deviation/Inter-Quartile Range

The **quartiles** divide the data into four parts. There are a total of three quartiles which are usually denoted by Q_1 , Q_2 and Q_3 .



The inter-quartile range is defined as the difference between the upper quartile and the lower quartile of a set of data.

Inter-quartile range = $Q_3 - Q_1$

Quartile Deviation/Semi Inter Quartile Range = $Q_3-Q_1/2$

Example

· Calculate Quartile Deviation-

Wages in Rs. per week	No. of wages earners
Less than 35	14
35-37	62
38-40	99
41-43	18
Over 43	7

Deviations from the mean

- Useful for interval or ratio level data
- An examination of deviation from the mean can reveal information about the variability of the data
 - Deviations are used mostly as a tool to compute other measures of variability
- However, the sum of deviations from the arithmetic mean is always zero:

$$Sum (X - \mu) = 0$$

There are two ways to solve this conundrum...

Mean Absolute Deviation (MAD)

One solution is to take the absolute value of each deviation around the mean. This is called the <u>Mean Absolute Deviation</u>

Х	X-m	X-m	
5	-8	8	$MAD = \frac{\sum X - \mu }{ X - \mu } = \frac{24}{ X - \mu } = 8.4$
9	-4	4	$mAD = \frac{-1}{n} = -3.4$
16	3	3	
17	4	4	
18	5	5	

Note that while the MAD is intuitively simple, it is rarely used in practice

Standard Deviation

- It is most important and widely used measure of studying variation.
- It is a measure of how much 'spread' or 'variability' is present in sample.
- If numbers are less dispersed or very close to each other then standard deviation tends to zero and if the numbers are well dispersed then standard deviation tends to be very large.

For Ungrouped Data

For a set of ungrouped data $x_1, x_2, ..., x_n$,

Standard deviation
$$\sigma = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n}}$$

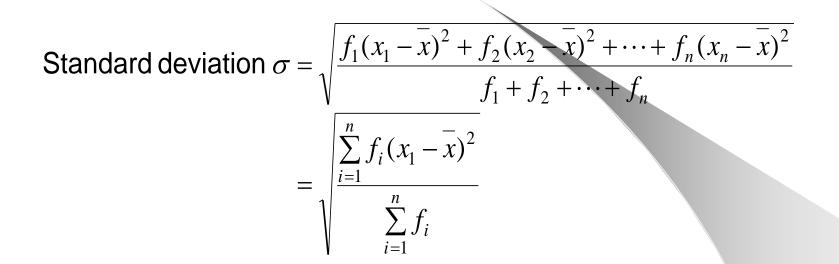
$$= \sqrt{\frac{\sum_{i=1}^n f_i (x_1 - \overline{x})^2}{n}}$$

where \overline{x} is the mean and *n* is the total number of data.

 It is the average of the distances of the observed values from the mean value for a set of data

$SD = \sqrt{\frac{Sum \text{ of so}}{1 + 1}}$	of squares of individual deviations from arithmetic mean					
SD =	Nu	mber of items				
Example	Scores	Deviations From Mean	Squares of Deviations			
:	01	-13	169			
	03	-11	121			
	05	-09	81			
	06	-08	64			
No. of scores $= 10$	11	-03	9			
	12	-02	4			
M = 143/10 = 14	15	+01	1			
	19	+05	25			
	34	+20	400			
$SD = \sqrt{\frac{1403}{10}} = 11.8$	<u>37</u> 143	+23	<u>529</u> 1403			

For Grouped Data



where f_i is the frequency of the *i*th group of data, \overline{x} is the mean and *n* is the total number of data.

Example

Calculate standard deviation-

Size of item	Frequency	Size of item	Frequency
3.5	3	7.5	85
4.5	7	8.5	32
5.5	22	9.5	8
6.5	60		

Example

Calculate standard deviation -

Marks	No. of students
0-10	5
10-20	12
20-30	30
30-40	45
40-50	50
50-60	37
60-70	21

Variance

- σ^2 = Variance= (standard deviation)²
- For comparing the variability of two or more distributions,
- Coefficient of variation = s.d. X 100

0

mean

$$C.V. = \frac{\sigma}{\overline{x}} X100$$

More C.V., More variability

	Organization A	Organization B
Number of employees	100	200
Average wage per employee	5000	8000
Variance of wages per employee	6000	10000

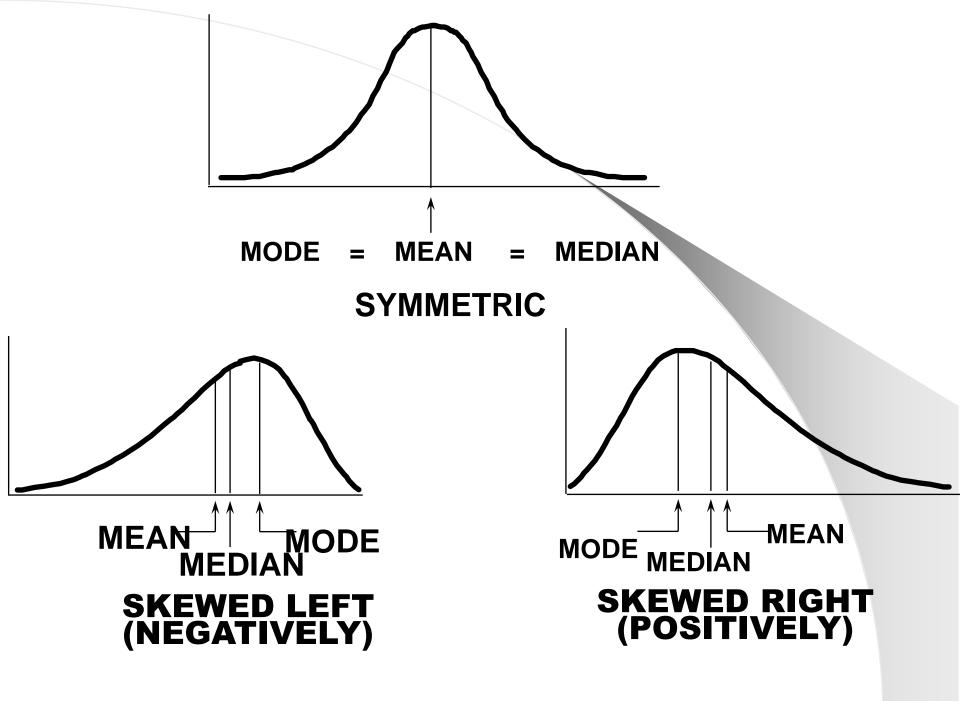
Which organization is more uniform wages?

Measure of Shape

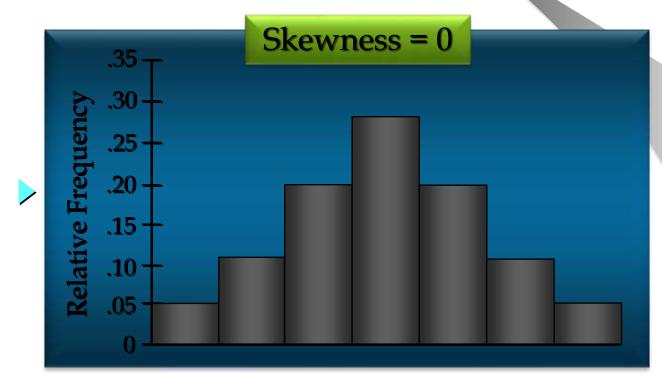
- Tools that can be used to describe the shape of a distribution of data.
- Two measures of shape-
- Skewness
- Kurtosis

SKEWNESS

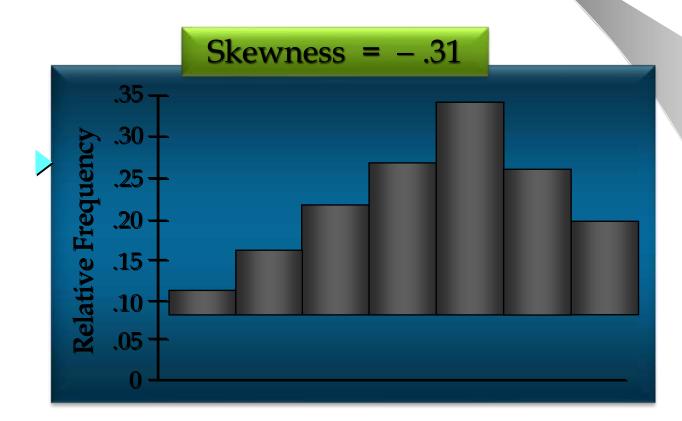
- A distribution of data in which the right half is a mirror image of the left half is symmetrical(no skewness)
 - Distribution lacks symmetry i.e. asymmetrical i.e skewness
- The skewed portion is long, thin part of the curve.
 Skewed left or negatively skewed
 Skewed right or positively skewed.
- Data sparse at one end and piled up at the other .
 - patients suffering from diabetes



- Symmetric (not skewed)
 - Skewness is zero.
 - Mean and median are equal.

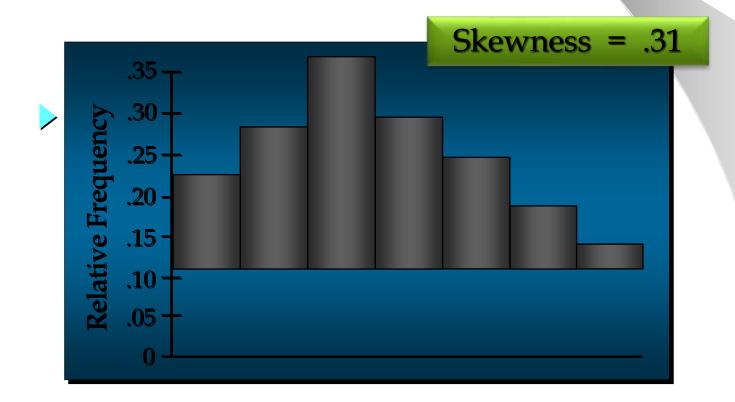


- Moderately Skewed Left
 - Skewness is negative.
 - Mean will usually be less than the median.



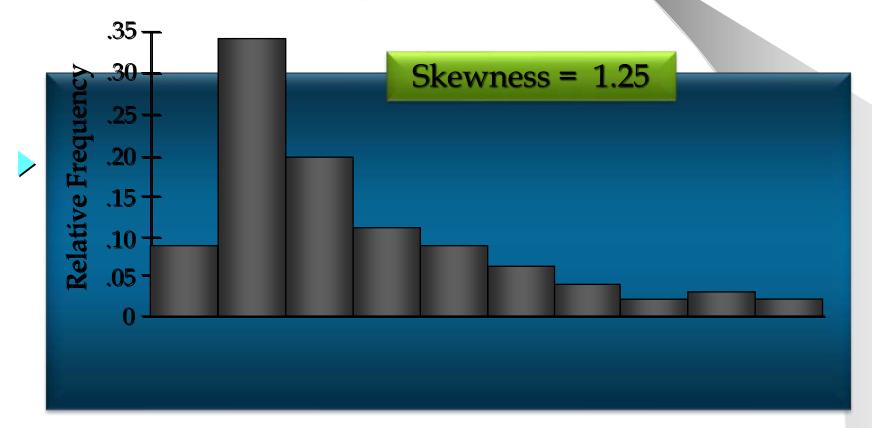
• Moderately Skewed Right

- Skewness is positive.
- Mean will usually be more than the median.



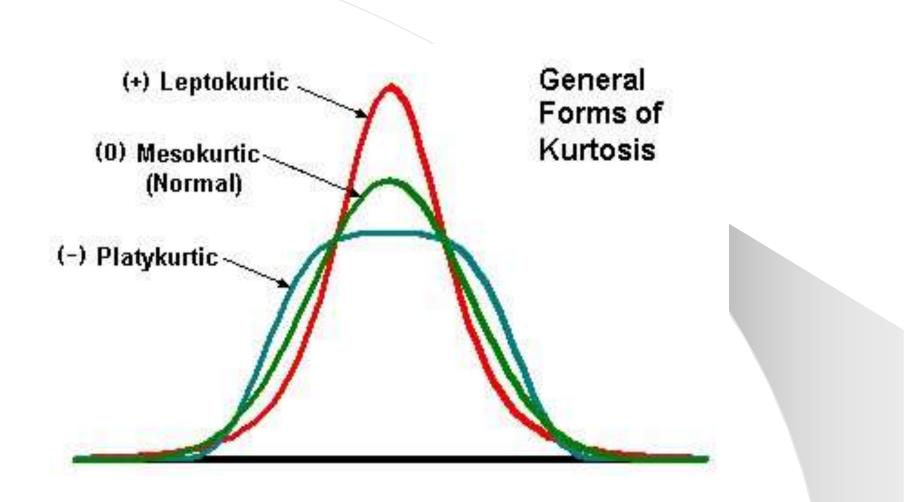
Highly Skewed Right

- Skewness is positive (often above 1.0).
- Mean will usually be more than the median.



Kurtosis

- Describes the amount of peakedness of a distribution.
- Lepto-kurtic: more peaked than normal curve
 Platy-kurtic: more flat-tapped than normal curve
 Meso-kurtic: a normal shape in a frequency distribution



z-Scores

The <u>z-score</u> is often called the standardized value.

It denotes the number of standard deviations a data value x_i is from the mean.

$$z_i = \frac{x_i - \overline{x}}{s}$$

Excel's STANDARDIZE function can be used to compute the z-score.

z-Scores

- An observation's z-score is a measure of the relative location of the observation in a data set.
- A data value less than the sample mean will have a z-score less than zero.
- A data value greater than the sample mean will have a z-score greater than zero.
- A data value equal to the sample mean will have a z-score of zero.

z-Scores

Example: Apartment Rents

z-Score of Smallest Value (425)

Standardized Values for Apartment Rents									
-1.20	-1.11	-1.11	-1.02	-1.02	-1.02	-1.02	-1.02	-0.93	-0.93
-0.93	-0.93	-0.93	-0.84	-0.84	-0.84	-0.84	-0.84	-0.75	-0.75
-0.75	-0.75	-0.75	-0.75	-0.75	-0.56	-0.56	-0.56	-0.47	-0.47
-0.47	-0.38	-0.38	-0.34	-0.29	-0.29	-0.29	-0.20	-0.20	-0.20
-0.20	-0.11	-0.01	-0.01	-0.01	0.17	0.17	0.17	0.17	0.35
0.35	0.44	0.62	0.62	0.62	0.81	1.06	1.08	1.45	1.45
1.54	1.54	1.63	1.81	1.99	1.99	1.99	1.99	2.27	2.27

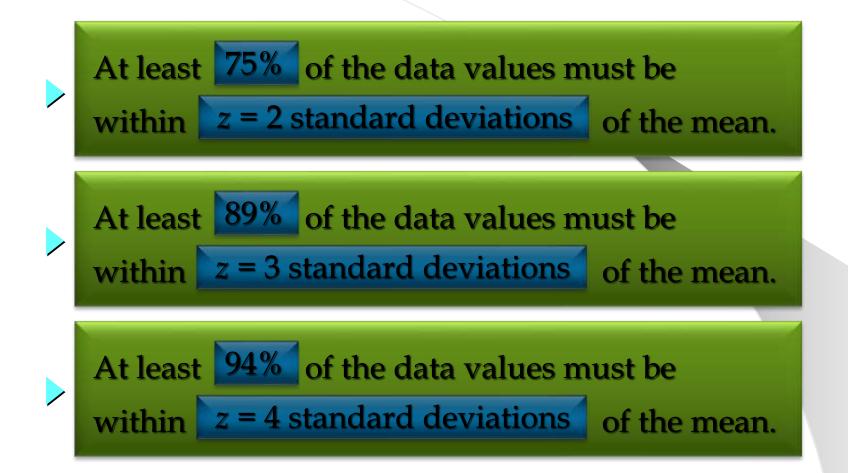
 $z = \frac{x_i - \overline{x}}{s} = \frac{425 - 490.80}{54.74} = -1.20$

Chebyshev's Theorem

At least $(1 - 1/z^2)$ of the items in <u>any</u> data set will be within *z* standard deviations of the mean, where *z* is any value greater than 1.

Chebyshev's theorem requires z > 1, but z need not be an integer.

Chebyshev's Theorem



Chebyshev's Theorem

Example: Apartment Rents

> Let z = 1.5 with $\pi = 490.80$ and s = 54.74

> At least $(1 - 1/(1.5)^2) = 1 - 0.44 = 0.56$ or 56%

of the rent values must be between

$$\overline{x} - z(s) = 490.80 - 1.5(54.74) = (409)$$

and
$$\overline{x} + z(s) = 490.80 + 1.5(54.74) = 573$$

(Actually, 86% of the rent values are between 409 and 573.)

Empirical Rule

When the data are believed to approximate a bell-shaped distribution ...

The <u>empirical rule</u> can be used to determine the percentage of data values that must be within a specified number of standard deviations of the mean.

The empirical rule is based on the normal distribution

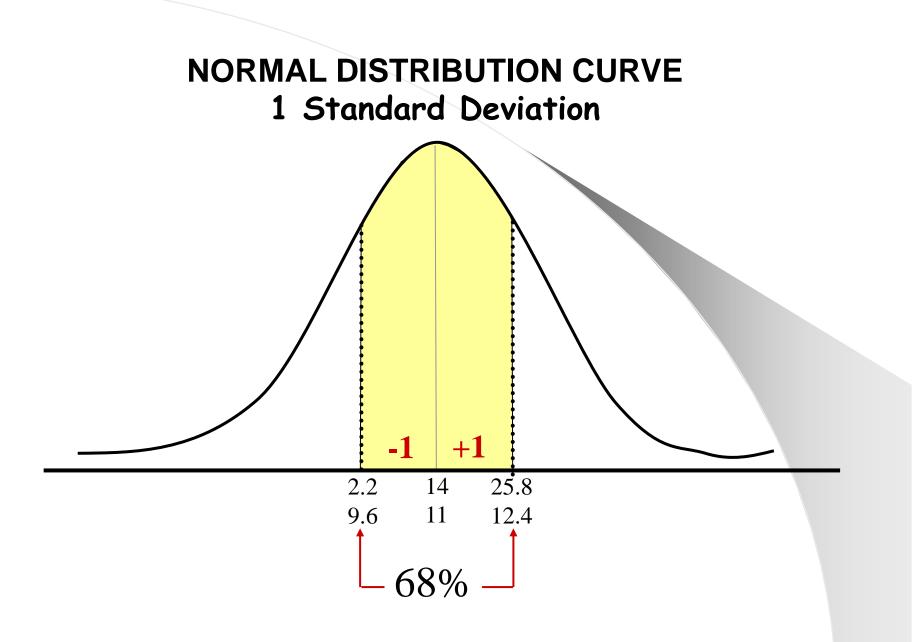
Empirical Rule

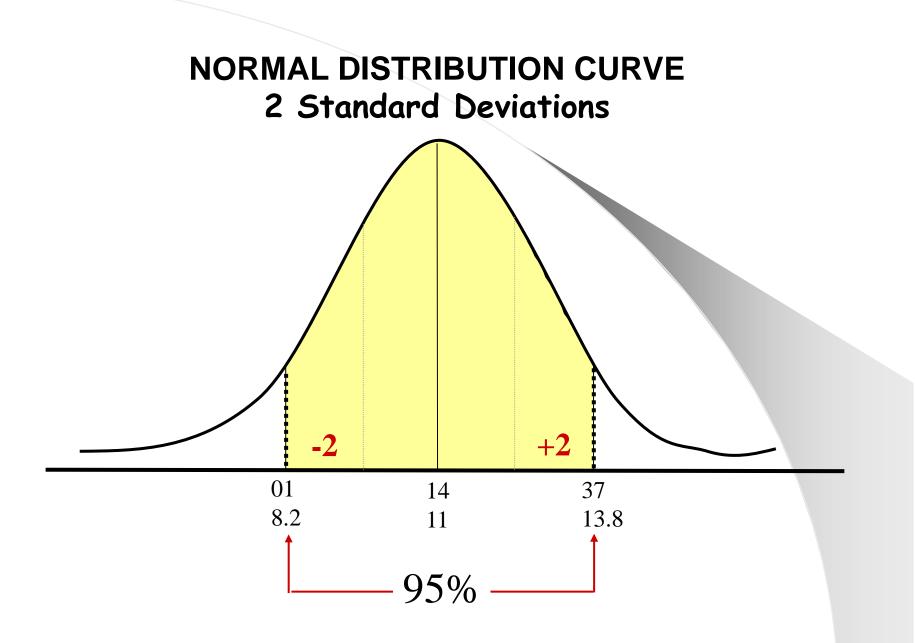
For data having a bell-shaped

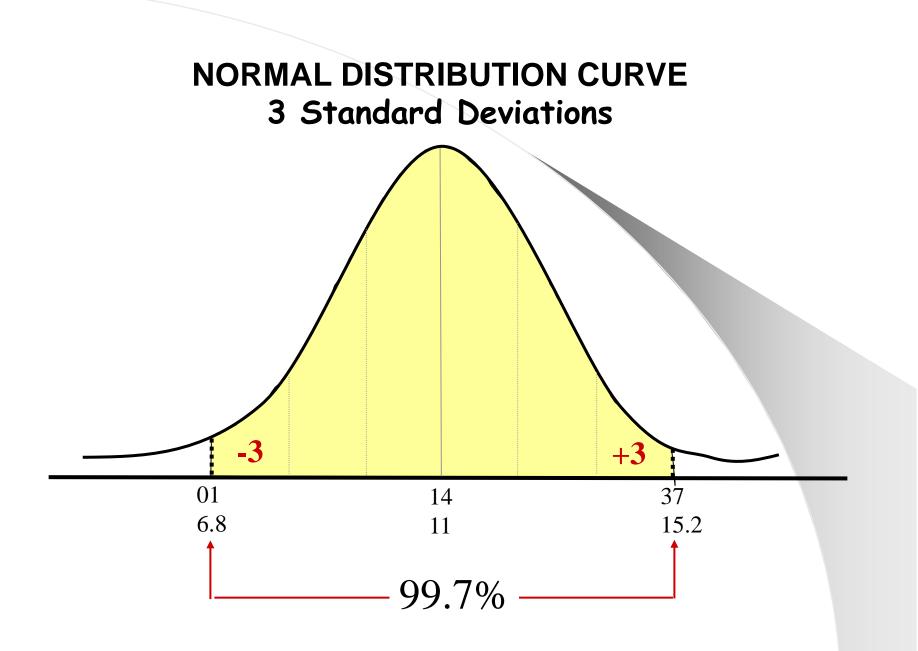
68.26%of the values of a normal random variableare within+/-1 standard deviationof its mean.

95.44%of the values of a normal random variableare within+/- 2 standard deviationsof its mean.

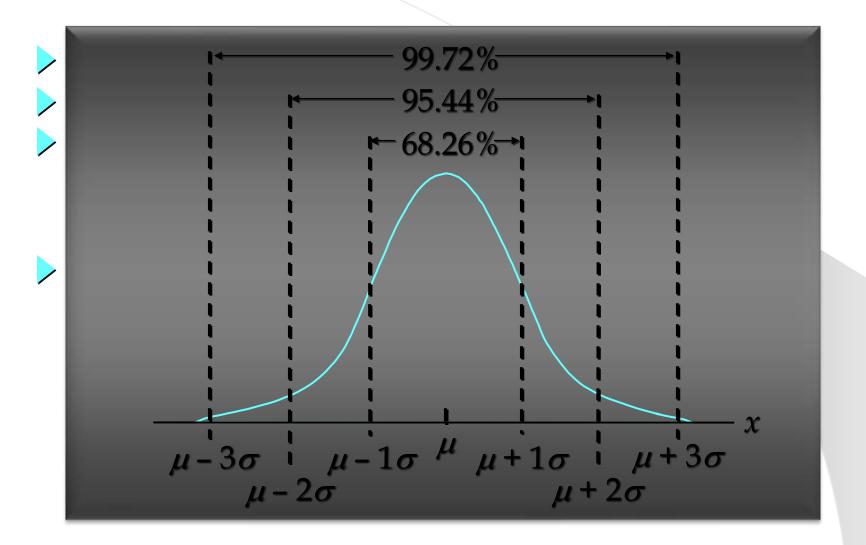
99.72%of the values of a normal random variableare within+/- 3 standard deviationsof its mean.







Empirical Rule



Detecting Outliers

- An <u>outlier</u> is an unusually small or unusually large value in a data set.
- A data value with a z-score less than -3 or greater than +3 might be considered an outlier.
- It might be:
 - an incorrectly recorded data value
 - a data value that was incorrectly included in the data set
 - a correctly recorded data value that belongs in the data set

Detecting Outliers

- Example: Apartment Rents
 - The most extreme z-scores are -1.20 and 2.27
- Using $|z| \ge 3$ as the criterion for an outlier, there are no outliers in this data set.

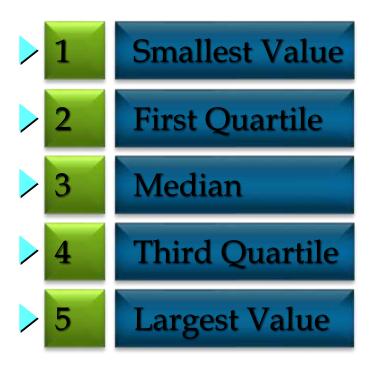
Standardized Values for Apartment Rents									
-1.20	-1.11	-1.11	-1.02	-1.02	-1.02	-1.02	-1.02	-0.93	-0.93
-0.93	-0.93	-0.93	-0.84	-0.84	-0.84	-0.84	-0.84	-0.75	-0.75
-0.75	-0.75	-0.75	-0.75	-0.75	-0.56	-0.56	-0.56	-0.47	-0.47
-0.47	-0.38	-0.38	-0.34	-0.29	-0.29	-0.29	-0.20	-0.20	-0.20
-0.20	-0.11	-0.01	-0.01	-0.01	0.17	0.17	0.17	0.17	0.35
0.35	0.44	0.62	0.62	0.62	0.81	1.06	1.08	1.45	1.45
1.54	1.54	1.63	1.81	1.99	1.99	1.99	1.99	2.27	2.27

Five-Number Summaries and Box Plots

Summary statistics and easy-to-draw graphs can be used to quickly summarize large quantities of data.

Two tools that accomplish this are <u>five-number</u> <u>summaries</u> and <u>box plots</u>.

Five-Number Summary



Five-Number Summary

Example: Apartment Rents

Lowest Value = 425 First Quartile = 445 Median = 475 Third Quartile = 525 Largest Value = 615

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615